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Bridgman anvils (Katz and Ahrens, 1963). In this appa· 
ratus, an x cut quartz crystal is attached to the back 
of one anvil and a y cut quartz crystal is attached to the 
back of the other. This makes it possible to introduce 
either longitudinal or transverse waves through an anvil 
and into the sample by activating one or the other. 

An important result of ultrasonic work is the determi­
nation of isothermal bulk modulus, BT , and its pressure 
derivatives, B~, B~: 

B T =- V (ap) 
av T 

1 

f3 
(25) 

where f3 is the isothermal volume compressibility. Since 
in acoustical measurements there is insufficient time 
during compression for dissipation of heat, the values 
which can be derived directly from the measurements 
are the adiabatic bulk modulus Bs and its pressure 
derivatives B~ and B~: 

(26) 

The relationship between the adiabatic and isothermal 
bulk moduli is given by: 

Bs = BT (1 + cx:yT) (27) 

where a is the volume coefficient of thermal expansion 
and y is the Gruneisen ratio. 

For a cubic crystal at zero pressure the adiabatic 
bulk modulus is derived from the adiabatic elastic 
moduli by: 

B,(O) = Cll + 2Cl2 

3 
(28) 

where Cli and Cl2 are the elastic moduli oriented parallel 
and perpendicular respectively to the applied normal 
stresses and (0) indicates zero pressure. 

The elastic moduli of a crystal may be derived from 
the velocities of longitudinal and transverse acoustic 
waves propagating through the crystal in different 
directions. These relationships for a cubic crystal are 
given in table 16. 

The first pressure derivative of the bulk modulus 
can be determined from two types of sonic velocity 
measurements, (1) the variation of elastic moduli as a 
function of pressure in a hydrostatic system (Anderson, 
1966) and (2) the third order elastic moduli calculated 
from acoustic velocities in a uniaxially stressed sample 
(Thurston, 1967; McSkimin and Andreatch, 1964). The 
relationship of the first pressure derivative of bulk 
modulus to the third order elastic moduli for a cubic 
(m3m) substance at zero pressure is given by: 

B~(O) = - 9B~(0) (ClIl + 6cl12 + 2C123) . (29) 

Fourteen different combinations of stress, propagation, 
and vibration directions are necessary to acquire enough 
data to calculate the third order elastic constants. 
McSkimin and Andreatch (1964) give the equations 
relating the velocities to the third order elastic constants. 

TABLE 16. Relationship of elastic moduli to acoustic wave velocities 
in cubic crystals 

Velocities 

VI 
Vt 

Va 
V. 
V. 

Propagation Vibration 
direction direction 

(001) 
(001) 
(110) 
(110) 
(110) 

Elastic moduli 

CII = pV~ 

CII = p(V~ + ~ - V!) 

CI2 = p(V; - 2~) 

CI 2 = p(V5 - V£ - V!) 

C44 = pVi 
C44 = p~ 

(001) 
(110) 
(110) 
(001) 
(110) 

The conversivn from B; to B~ is given by: 

B~(O) = B; (0) + Tal' (~:fgn 

Mode 

Long 
Trans 
Long 
Trans 
Trans 

[1- aB:(O) eB;?)) -2B; (0) ] + [Tal' (!:«gn r 
[B;(O) _1_l. (a a) ] (30) 

a 2 aT p • 

The second pressure derivative of bulk modulus can 
be calculated from the fourth order elastic moduli. 
For a cubic (m3m) substance at zero pressure the rela­
tionship is given by: 

B;(O) = [- 2C11 -15B.(0)-9B. (O)B; (0) 

+cu \1 + 8C1l12 + 6C1122 + 12c1123]/27B;(0). (31) 

The authors know of no experimental determinations 
of the fourth order elastic constants, and the conversion 
of adiabatic values to isothermal ones has not been 
worked out. 

Anderson (1%6) in a discussion of precision of ultra­
sonic velocity measurements estimates that the change 
of velocity with pressure in a hydrostatic system can 
be known to at least four significant figures provided 
the pressure also can be measured to four figures. This 
can be realized in measurements employing a dead 
weight loader for a primary pressure standard. He 
concludes that BB can be measured to five figures, B; 
to three and possibly four figures, and B; to two and 
possibly three figures. 
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McSkimin and Andreatch (1964) estimate that their 
measurements of velocities as a function of stress have 
a possible error of five parts in 105• The third order 
elastic constants which are utilized in the calculation 
of B; have errors which would result in an error of 
approximately 2 percent in the B;. 

By substituting any combination of equations in table 
16 intt> the equation for the adiabatic bulk modulus of 
a cubic substance, we obtain: 

Bs(O)/p= v~ -4/3 (v:) (32) 

where Vp is the velocity of longitudinal waves and Vs is 
the velocity of transverse waves. This equation is also 
valid for a perfectly isotropic substance (Katz and 
Ahrens, 1963). Thus the ratio of bulk modulus to density 
may be found directly from the longitudinal and trans­
verse sonic velocities in either a properly oriented 
single cubic cyrstal or a polycrystalline sample (which 
is essentially isotropic if the wavelength is long com· 
pared with the crystallite size.) Anderson and Schreiber 
(1965) have determined the bulk modulus and other 
elastic constants of MgO from sonic velocities in a poly· 
crystalline sample under hydrostatic pressure up to 4 
kbar. Katz and Ahrens (1963) have made velocity 
measurements on polycrystalline KCI and CaC03 

between Bridgman anvils at pressures up to 40 kbar. 
Pressure as a function of the ratio of bulk modulus 

to density at a given temperature is easily found from 
an equation of state. Thus, it is possible to find the 
pressure of a sample from its sonic velocities when its 
equation of state is known. 

The high sensitivity of ultrasonic measurements sug­
gests a possible secondary pressure gage in hydrostatic 
systems. Heydemann (1967b) has studied the feasibility 
of such a gage and proposes the use of fused quartz as 
the gage material. Indications are that such a gage would 
be more repeatable, more accurate, and more conven­
ient than the manganin gage. In solid systems, a tech­
nique such as that employed by Katz and Ahrens (1963) 
is potentially useful as a means for determining pressure. 
Some advantages which it has to offer are: (1) sonic 
waves do not require special materials as windows or 
plugs for access to the sample; the source can be at­
tached to the outer surface of a pressure chamber or 
anvil as in the apparatus of Katz and Ahrens, and (2) it is 
possible that in a carefully designed system the use of 
various geometries could yield information on the aniso­
tropic strain within the sample. On the other hand, it has 
some disadvantages which make it generally less attrac­
tive than other methods. These are: (1) the sample must 
be homogeneous thus not allowing an intimate mixture 
of a sample with a calibrant as in high pressure x-ray 
diffraction, (2) the sample must be contained between 
two very parallel faces and the distances between the 
faces must be well known, and (3) lack of hydrostaticity 
may introduce a serious error in the calculations. 

Studies indicating the potential use of ultrasonic meas-
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urements to characterize liquid media to 50 kbar have 
been made by Heydemann and Houck (1968). 

4.3. Resistance Gage 

Secondary pressure gages based upon interpolation 
and extrapolation methods can be constructed using any 
physical parameter which varies monotonically with 
pressure. Criteria for selection of a particular phenom­
enon in preference to others are convenience, simplicity, 
reliability, and sensitivity. The resistance gage based 
upon the change of electrical resistance of a given length 
of metallic wire offers a very convenient and straight­
forward measurement consistent with a relatively high 
degree of reliability and sensitivity. 

The possible use of such a gage for hydrostatic­
pressure systems was first realized by Lisell (1903), who 
had measured the change of resistance with pressure 
for several metals. For most metals the very small 
change, a few parts per million for a pressure change of 
one bar, requires a very accurate measurement of the 
resistance. Earlier Palmer (1898) and later Bridgman 
(1909b) used the resistance of liquid mercury in a glass 
capillary, since for liquid mercury the change in resist­
ance with pressure is almost two orders of magnitude 
greater than for most solid metals. Lisell proposed the 
use of manganin wire and when Bridgman (1911a) ex­
tended his measurements to pressures above the freez­
ing pressure of mercury at room temperature, he adopted 
manganin as a resistance gage and studied its properties 
sufficiently to develop a secondary standard as reproduc­
ible and as sensitive as his primary free-piston gage in 
its stage of development at that time. Based upon con­
tinued development by Bridgman (1940a, b; 1946) and 
by Michels and Lenssen (1934) and careful studies by 
Adams, Goranson, and Gibson (1937) the manganin re­
sistance gage became the accepted secondary gage for 
use in hydrostatic systems. 

With significant increases in the precision, reliability, 
and range of the primary free-piston gage, re-evaluations 
of the resistance gage have been made (Newhall, 1962). 
The increased precision in both the primary and the re­
sistance gages indicated limitation of the gages as dis­
cussed below. The significant considerations in selecting 
a suitable material for a resistance gage and the inher­
ent advantages of this gage in contrast to other interpola­
tion devices will be discussed before presenting the 
recent developments. 

a. Requirements of on Acceptable Resistance Gage 

One can enumerate those properties of a metal which 
would be desirable for use as a resistance gage: (1) high 
sensitivity of resistan·ce to pressure, (2) low sensitivity 
of resistance to temperature, (3) a high degree of repro­
ducibility from gage to gage (i.e., low sensitivity to chem­
ical composition and manufacturing techniques), (4) a 
stable value of resistance with time or past history, (5) 
linear or nearly linear response with pressure, (6) high 


